Smoothing in an Underdetermined Linear Model with Random Explanatory Variables

نویسنده

  • Gary Sneddon
چکیده

In some physical systems, where the goal is to describe behavior over an entire eld using scattered observations, a multiple regression model can be derived from the discretization of a continuous process. These models often have more parameters than observations. We propose a technique for constructing smoothed estimators in this situation. Our method assumes the model has random explanatory and response variables, and imposes a smoothness penalty based on the signal-to-noise ratio of the model. Results will be presented using a known value for the ratio, and a method for estimating the ratio will be discussed. The procedure will be applied to modelling temperature measurements taken in the California Current.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation Models and Fitting Them for the Boolean Random Sets

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

Forecast generation model of municipal solid waste using multiple linear regression

The objective of this study was to develop a forecast model to determine the rate of generation of municipal solid waste in the municipalities of the Cuenca del Cañón del Sumidero, Chiapas, Mexico. Multiple linear regression was used with social and demographic explanatory variables. The compiled database consisted of 9 variables with 118 specific data per variable, which were analyzed using a ...

متن کامل

A Generalized Linear Statistical Model Approach to Monitor Profiles

Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...

متن کامل

A WEIGHTED LINEAR REGRESSION MODEL FOR IMPERCISE RESPONSE

A weighted linear regression model with impercise response and p-real explanatory variables is analyzed. The LR fuzzy random variable is introduced and a metric is suggested for coping with this kind of variables. A least square solution for estimating the parameters of the model is derived. The result are illustrated by the means of some case studies.

متن کامل

Phase II monitoring of auto-correlated linear profiles using linear mixed model

In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998